
Technical Report

A Vision-Based Analysis of Congestion Pricing in New York City
Mehmet Kerem Turkcan1, Jhonatan Tavori2, Javad Ghaderi3, Gil Zussman4, Zoran Kostic5 and Andrew Smyth6

1,2,3,4,5,6Columbia University, New York, USA

Abstract

We examine the impact of New York City’s congestion pricing program through automated analysis of traffic camera data. Our computer vision
pipeline processes footage from over 900 cameras distributed throughout Manhattan and New York, comparing traffic patterns from November
2024 through the program’s implementation in January 2025 until January 2026. By excluding anomalous periods such as holidays, we establish
baseline traffic patterns and identify systematic changes in vehicle density across the monitored region.

Keywords: computer vision, urban planning, congestion pricing, traffic analysis, smart cities, urban mobility

Website: https://mkturkcan.github.io/congestionpricing/
DOI: https://www.doi.org/10.57967/hf/4448

1. Introduction

U rban congestion pricing has emerged as a key policy tool for
managing traffic flow in major metropolitan areas, following

successful implementations in Singapore (1975), London (2003),
Stockholm (2006), Milan (2008), and Gothenburg (2013) [1]. On
November 14, 2024, New York City announced its own congestion
pricing program, effective January 5, 2025, marking the first such
implementation in a North American city [2]. Although previous
studies have examined congestion pricing effects through manual
traffic counts, sensor networks, or limited camera deployments, a
visual analysis of city-wide traffic patterns remains challenging due
to the scale of data collection and processing needed.
We address this challenge by developing a computer vision pipeline

that leverages New York City’s existing network of 910 traffic cameras
provided by webcams.nyctmc.org [3]. Our methodology enables
systematic measurement of traffic density changes both within and
around the designated Congestion Relief Zone, while addressing
technical challenges inherent in processing low-resolution traffic
camera feeds at scale. This approach offers three key contributions:

1. A single-stage object detection model (YOLO-LR) optimized
for processing low-resolution (352 × 240) traffic camera footage
available to the public, achieving improved detection accuracy
compared to standard high-resolution models;

2. A scalable infrastructure for real-time processing of hundreds of
simultaneous video feeds using distributed computing;

3. A methodology for analyzing traffic pattern changes that ac-
counts for temporal variations and systematic biases in camera-
based measurements.

By establishing this framework, we enable quantitative evaluation
of large-scale traffic policy interventions using existing urban camera
infrastructure. Our analysis provides insights into the effects of the
implementation of congestion pricing and the spatial redistribution
of traffic patterns throughout the metropolitan area.

2. Algorithm

2.1. Object Detection
We address the technical challenges of processing low-resolution traf-
fic camera footage by developing YOLO-LR, an adaptation of YOLO
optimized for low-resolution input. Of the 910 cameras in our dataset,
770 (84.6%) output footage at 352 × 240 pixels, significantly below
standard object detection dataset resolutions. We train our model
on the COCO dataset at this resolution, specifically focusing on five
relevant classes: bicycle, car, motorcycle, bus, and truck. Images
are resized and padded to 352 × 352 resolution. We show compara-
tive evaluation metrics in Table 1 against the standard YOLO model

Algorithm 1 Traffic Pattern Analysis
Require:
1: 𝐷 = {𝑑1, ..., 𝑑𝑛} ⊳ Raw traffic count observations
2: 𝑡 = {𝑡1, ..., 𝑡𝑛} ⊳ Timestamps for each observation
3: 𝑆 = {𝑠1, ..., 𝑠𝑚} ⊳ Set of traffic count sources
4: 𝑤 ⊳ Rolling window size
5: 𝑇𝑠𝑝𝑙𝑖𝑡 ⊳ Split timestamp
6: procedure ProcessTrafficData(𝐷, 𝑡, 𝑆, 𝑤, 𝑇𝑠𝑝𝑙𝑖𝑡)
7: for each source 𝑠 ∈ 𝑆 do
8: 𝐷̄𝑠 ← RollingMean(𝐷𝑠, 𝑤) ⊳ Smooth counts for source s
9: end for
10: 𝐻 ← {0, ..., 23} ⊳ Hours of day
11: 𝑊 ← {weekday,weekend} ⊳ Day types
12: 𝑃 ← {before, after} ⊳ Split periods
13: for each source 𝑠 ∈ 𝑆 do
14: for each (ℎ, 𝑤, 𝑝) ∈ 𝐻 ×𝑊 × 𝑃 do
15: 𝐷𝑠,ℎ,𝑤,𝑝 ← {𝑑𝑖 ∈ 𝐷̄𝑠|Hour(𝑡𝑖) = ℎ,DayType(𝑡𝑖) =

𝑤, 𝑡𝑖 ∈ 𝑝}
16: 𝜇𝑠,ℎ,𝑤,𝑝 ← Mean(𝐷𝑠,ℎ,𝑤,𝑝)
17: end for
18: end for
19: for each time window [ℎ1, ℎ2] ∈ TimeWindows do
20: for each (𝑠, 𝑤) ∈ 𝑆 ×𝑊 do
21: Peak𝑠,𝑤,𝑏𝑒𝑓𝑜𝑟𝑒 ← maxℎ∈[ℎ1 ,ℎ2] 𝜇𝑠,ℎ,𝑤,𝑏𝑒𝑓𝑜𝑟𝑒
22: Peak𝑠,𝑤,𝑎𝑓𝑡𝑒𝑟 ← maxℎ∈[ℎ1 ,ℎ2] 𝜇𝑠,ℎ,𝑤,𝑎𝑓𝑡𝑒𝑟
23: ∆𝑝𝑒𝑎𝑘,𝑠,𝑤 ← Peak𝑠,𝑤,𝑎𝑓𝑡𝑒𝑟 − Peak𝑠,𝑤,𝑏𝑒𝑓𝑜𝑟𝑒
24: end for
25: end for
26: return {∆𝑝𝑒𝑎𝑘,𝑠,𝑤|𝑠 ∈ 𝑆,𝑤 ∈ 𝑊} ⊳ Peak differences for each

source
27: end procedure
28: where:
29: TimeWindows = {[0, 23], [6, 9], [9, 15], [15, 18]} ⊳ Day,

Morning, Midday, Afternoon
30: RollingMean(𝑋,𝑤) = 1

𝑤

∑𝑤−1
𝑖=0 𝑥𝑡−𝑖 ⊳ w-point moving average

trained at 640 × 640 resolution. Our results show that the YOLO-LR
model demonstrates improved performance on low-resolution traffic
footage.

2.2. Data Collection Infrastructure

Our data collection system employs a distributed architecture with
16 parallel workers for frame capture and processing. The pipeline
processes captured frames in batches of 64 using the YOLO-LRmodel
compiled using TensorRT, with automatic discarding of frames ex-

A Vision-Based Analysis of Congestion Pricing in New York City Technical Report 1–2

https://mkturkcan.github.io/congestionpricing/
https://www.doi.org/10.57967/hf/4448
webcams.nyctmc.org


A Vision-Based Analysis of Congestion Pricing in New York City Turkcan et al.

Table 1. Performance comparison of YOLO models across different classes in COCO val.

Class Instances YOLO-LR (imgsz=352) YOLO11n (imgsz=352) YOLO11n (imgsz=640)

R mAP50 mAP50-95 R mAP50 mAP50-95 R mAP50 mAP50-95

All 3296 0.488 0.537 0.357 0.420 0.467 0.305 0.523 0.597 0.413
Bicycle 314 0.341 0.387 0.227 0.277 0.332 0.188 0.392 0.478 0.280
Car 1918 0.481 0.513 0.305 0.388 0.410 0.237 0.523 0.582 0.375
Motorcycle 367 0.537 0.605 0.373 0.512 0.577 0.338 0.585 0.672 0.440
Bus 283 0.678 0.740 0.595 0.601 0.652 0.537 0.707 0.772 0.647
Truck 414 0.403 0.437 0.287 0.321 0.363 0.224 0.408 0.480 0.326

ceeding a 100ms download threshold. All processing is performed
on a single compute node equipped with dual NVIDIA A100 40GB
GPUs. Detection results are stored in a SQLite database for subse-
quent analysis. All frames are discarded after processing.

2.3. Pattern Analysis

Our pattern analysis methodology addresses three key challenges in
urban traffic analysis: temporal variability, spatial heterogeneity, and
measurement noise. Algorithm 1 details our approach to quantify-
ing traffic pattern changes through a multi-scale temporal analysis
framework.
To quantify congestion dynamics, we introduce Peak Hour Differ-

entials (PHD), a metric that captures intervention-induced changes
in vehicle densities, while accounting for temporal dependencies and
systematic biases in camera-based observations.
Given a traffic source 𝑠 and time 𝑡, let 𝐷𝑠(𝑡) denote the vehicle

count at time 𝑡, and define the rolling mean vehicle density over a
window of size 𝜔 as:

𝐷̄𝑠(𝑡) =
1
𝜔

𝜔−1∑

𝑖=0
𝐷𝑠(𝑡 − 𝑖), (1)

To assess congestion changes before and after intervention, we define
the time-partitioned expectation of vehicle density for a given source
𝑠, hour ℎ, and day type 𝑤 as:

𝜇𝑠,ℎ,𝑤,𝑝 = 𝔼[𝐷𝑠(𝑡) ∣ Hour(𝑡) = ℎ,DayType(𝑡) = 𝑤, 𝑡 ∈ 𝑝], (2)

where 𝑝 denotes either the pre- or post-intervention period.
For each source 𝑠 and day type 𝑤, we compute peak densities over

specified time windows [ℎ1, ℎ2], where

Peak𝑠,𝑤,𝑝 = max
ℎ∈[ℎ1 ,ℎ2]

𝜇𝑠,ℎ,𝑤,𝑝. (3)

The Peak Hour Differential (PHD), measuring congestion shifts post-
intervention, is then given by

PHD𝑠,𝑤 = Peak𝑠,𝑤,after − Peak𝑠,𝑤,before. (4)

This metric provides three key advantages: (i) it directly quantifies
changes in peak congestion, the primary target of pricing interven-
tions, while maintaining clear physical interpretation in terms of
vehicle density, (ii) by computing peaks within defined windows
rather than at fixed times, it captures potential shifts in peak timing
induced by the intervention, and (iii) uses a rolling mean to counter
short-term fluctuations and anomalies.

3. Limitations

Our approach has some important limitations: (i) stationary vehicles
are included in traffic density calculations, which may affect mea-
surements in areas with high street parking density, (ii) the baseline
comparison period (starting mid-November) provides limited sea-
sonal context, (iii) the current implementation analyzes aggregate
traffic flow without distinguishing between individual lanes or travel

directions, (iv) camera-based instantaneous vehicle counts serve as
a proxy measure and may not directly correlate with actual transit
times or congestion levels, (v) New York experienced unusually cold
weather during January-February in 2025, which could have affected
commuter behavior significantly.

References

[1] L. Lehe, “Downtown congestion pricing in practice”,Transporta-
tion Research Part C: Emerging Technologies, vol. 100, pp. 200–
223, 2019.

[2] Metropolitan Transportation Authority, Congestion relief zone,
https://congestionreliefzone.mta.info/, Accessed: 2025-02-13.

[3] Real-time traffic information, https : / /webcams .nyctmc .org,
Accessed: 2025-02-13.

2–2

https://congestionreliefzone.mta.info/
https://webcams.nyctmc.org

	Introduction
	Algorithm
	Object Detection
	Data Collection Infrastructure
	Pattern Analysis

	Limitations

